ABSTRACT

The primary purpose of this study was to examine differences in head/department ratings of importance of key administrative responsibilities by academic discipline (i.e., the Biglan model) as well as to explore departmental differences in faculty ratings of the head/department’s performance of those responsibilities. Taken together, these findings offer evidence for the generalizability of department head/department ratings and the priorities by which academic departments judge the performance of their chairpersons. The vast majority (71%) of the department heads/chairs were appointed by a dean with consultation and approval of the faculty. Years of service varied, but the majority of the department head/chairs (63%) had served fewer than five years. The sample included 58% research universities, 33% master’s level universities, and 9% associate/bachelor’s level institutions. The majority of the department heads/chairs (91%) had not been challenged in a grievance procedure or a lawsuit during the previous five years.

We conducted two 2 (Structure: Hard vs. Soft) x 2 (Application: Pure vs. Applied) x 2 (Life Orientation: Life-Oriented vs. Not) multivariate analyses of variance (MANOVAs) separately on the chair ratings of importance and performance of the three factors (faculty assessment, departmental operations) and faculty ratings of performance on three factor scales (research/faculty assessment, faculty enhancement, and departmental operations). Alpha was set at .05. Furthermore, we made Bonferroni adjustments (α = .05/3 = .017) in conducting post-hoc univariate tests to control for Type I error inflation.

Head/Chair Ratings of Importance

With respect to head/chair ratings of importance, we observed a two-way Structure x Life Orientation interaction for the composite variable, Wilks’s λ = .970, p < .004, η² = .03. Univariate follow-ups revealed the significant interaction resided in the faculty enhancement factor, F (1,444) = 7.39, p < .007, η² = .016. Simple effects indicated a disordinal interaction. Within hard/paradigmatic departments, those with life orientations (e.g., agronomy, entomology, botany, zoology) attribute greater importance to faculty enhancement than do those with non-life orientations (e.g., chemistry, geology, physics, and math). This difference does not exist within soft departments. Second, chairs from departments with a life-orientation attribute greater importance to research/faculty assessment than those with non-life orientations. These findings support the importance of both the role heads/chairs fulfill and the faculty development. Nonetheless, given that there were no differences on faculty ratings of performances for their respective heads/chairs, just because a chair might emphasize a set of key responsibilities does not necessarily equate with greater performance of those responsibilities.

In sum, these findings offer evidence for the generalizability of department chair ratings instruments. Furthermore, the priorities assessed by department heads/chairs, and faculty ratings of those priorities, are fairly consistent across academic disciplines.

Instrumentation and Data Sources

Archived data files were accessed from the IDEA Center’s Database for Faculty Department Chair System (Hoyt, Bailey, & Gross, 1999). The database (http://idea.soe.org) supports the evaluation and development of a number of research programs that focus on students, faculty, department chairs, and other higher education administrators. In the IDEA Chair System, heads/chairs complete the Chair Information Form (CIF), and their corresponding faculty members respond to questions on the Faculty Perceptions of Department Head/Chair Survey (FPDHS). On the CIF, heads/chairs rate the importance of 20 administrative responsibilities, using a scale ranging from 1 = Not Important to 5 = Essential. On the FPDHS, faculty rate their respective department head/department’s performance of the same 20 administrative responsibilities, using a scale from 1 = Poor to 5 = Outstanding. Faculty data are aggregated for each department head/department, and mean faculty ratings are computed on each item. From 2003 to 2007, 19,083 faculty members were invited to rate their respective department head/department using the FPDHS (Hoyt et al., 1999). Of those invited, 14,479 completed at least one item on the FPDHS (75.9% response rate). A total of 644 different department heads/chairs were rated. To obtain the final sample for this study, several exclusion criteria were enacted. First, if fewer than eight faculty members rated a specific department head/department in a particular year, the department head/department’s entry was removed. Second, if there were multiple entries for a department head/department across the years 2003 to 2007, only one of these entries was retained by random selection. Third, only cases where faculty members responded to at least 50% of the items on the FPDHS were retained. The final sample consisted of data from 474 different department heads/chairs.

Procedure

Two coders independently categorized departments in the IDEA Chair Database by structure (hard/paradigmatic vs. soft, application (pure vs. applied), and life orientation (life-oriented vs. non-life). After the initial coding, ratings were of acceptable reliability (Kappas = .82, .79, and .86, respectively; percent agreement = .88.4%, 88.2%, and 89.0%). Disagreements were resolved by discussion.

Method

Data was analyzed using multivariate analysis of variance (MANOVA) using SPSS, version 16.0. Significant effects were explored with follow-up univariate tests. For these follow-up tests, Bonferroni adjustments were applied using a critical alpha of .017 for data that was reported within the article. Where appropriate, descriptive statistics are presented with significance tests (t-test or ANOVA) using the same alpha level.